LÊ THỊ THU HÀ

NGHIÊN CỨU THÀNH PHÀN HÓA HỌC CỦA CÁY ĐỊNH TỪNG
(CEPHALOTAXUS MANNII) Ở VIỆT NAM

LUẬN VĂN THẠC SĨ KHOA HỌC

Hà Nội – 2016
LỄ THỊ THU HÀ

NGHIÊN CỨU THÀNH PHẦN HÓA HỌC CỦA CÂY ĐỊNH TỪNG
(CEPHALOTAXUS MANNII) Ở VIỆT NAM

Chuyên ngành: Hóa Hữu Cơ
Mã số: 60440114

LUẬN VĂN THẠC SĨ KHOA HỌC

Người hướng dẫn khoa học:
TS. TRẦN VĂN LỘC

Hà Nội – 2016
LỜI CẢM ƠN

Xin bày tỏ lòng biết ơn chân thành và sâu sắc tới Viện Hóa học-Viện Hàn Lâm Khoa Học Công Nghệ Việt Nam và Đại học Khoa Học Tự Nhiên-Dại học Quốc Gia Hà Nội đã tạo điều kiện thuận lợi để luận văn tốt nghiệp này được hoàn thành. Đặc biệt, em xin chân thành cảm ơn TS.Trần Văn Lộc đã hướng dẫn, giúp đỡ em với những chỉ dẫn khoa học quý giá trong quá trình triển khai, nghiên cứu và hoàn thành luận văn.

Em xin chân thành cảm ơn các cô-chú, các anh chị em trong phòng Tổng hợp Hữu Cơ-Viện Hóa Học đã trực tiếp hướng dẫn, chỉ bảo giúp đỡ em hoàn thành được luận văn.

Xin gửi lời cảm ơn tới các thầy cô trường Đại Học Khoa học Tự Nhiên đã trực tiếp giảng dạy, truyền đạt những kiến thức khoa học chuyên ngành cho em trong những năm tháng qua.

Xin chân thành cảm ơn!

Tác giả luận văn

Lê Thị Thu Hà
LÔI CAM ĐOAN

Luận văn tốt nghiệp này được thực hiện tại phòng Tổng hợp Hữu cơ-Viện Hóa Học-Viện Hân lâm Khoa học và Công nghệ Việt Nam. Tôi cam đoan đây là công trình nghiên cứu của riêng tôi. Các số liệu, kết quả nghiên cứu nêu trong luận văn là trung thực.

Tác giả luận văn

Lê Thị Thu Hà
MỤC LỤC

MỞ DÀU .. 1
CHƯƠNG 1: TỔNG QUAN ... 4
1.1. ĐẶC ĐIỂM CHUNG VỀ HÌNH THÁI CỦA HỘ ĐỊNH TÚNG 4 (CEPHALOTAXACEAE) ... 4
 1.1.1. Chi Amentotaxus ... 4
 1.1.2. Chi Torreya .. 5
 1.1.3. Chi Cephalotaxus .. 7
 1.1.3.1. Cephalotaxus oliveri ... 7
 1.1.3.2. Cephalotaxus griffithii (Cephalotaxus lanceolata) 8
 1.1.3.3. Cephalotaxus fortune .. 8
 1.1.3.4. Cephalotaxus alpine ... 9
 1.1.3.5. Cephalotaxus latifolia .. 9
 1.1.3.6. Cephalotaxus koreana ... 10
 1.1.3.7. Cephalotaxus harringtonii ... 10
 1.1.3.8. Cephalotaxus hainanensis .. 11
 1.1.3.9. Cephalotaxus sinensis .. 11
 1.1.3.10. Cephalotaxus wilsoniana ... 12
 1.1.3.11. Cephalotaxus mannii .. 12
 1.1.3.12. Kết luận .. 12
1.2. GIỚI THIỆU VỀ CÂY ĐỊNH TÚNG CEPHALOTAXUS MANNII HOOK.F. 12
 1.2.1. Phân bố của loài định tùng Cephalotaxus mannii Hook.f. 12
 1.2.2. Đặc điểm hình thái cây định tùng Cephalotaxus mannii Hook.f. 13
 1.2.3. Công dụng của cây định tùng Cephalotaxus mannii Hook.f. 15
1.3. THÀNH PHẦN HÓA HỌC VÀ HOẠT TÍNH SINH HỌC CÁC LOẠI TRONG CHI ĐỊNH TÚNG .. 15
 1.3.1. Thành phần hóa học của loài định tùng Cephalotaxus harringtonia 15
 1.3.2. Thành phần hóa học của loài định tùng Cephalotaxus Wilsoniana 19
 1.3.3. Thành phần hóa học của loài định tùng Cephalotaxus mannii 22
 1.3.4. Các loại tinh dầu trong một số loài định tùng [27] 23
CHƯƠNG 2: THỰC NGHIỆM ... Error! Bookmark not defined.
2.1. THIẾT BỊ, HÓA CHẤT .. Error! Bookmark not defined.
2.2. PHƯƠNG PHÁP NGHIÊN CỨU

2.2.1. Phương pháp ngâm chi

2.2.2. Phương pháp tách chất và xác định cấu trúc

2.2.3. Phương pháp thăm dò hoat tính sinh học

2.3. CHIẾT TÁCH VÀ TINH CHẾ CÁC CHẤT TỪ CÂY ĐỈNH TÙNG

2.3.1. Nguyên liệu

2.3.2. Chiết tách và tinh chế các chất từ vỏ cây đỉnh tùng

CHƯƠNG 3: KẾT QUẢ VÀ THẢO LUẬN

3.1. Chất 26 (DTV Et2): epicatechin

3.2. Chất 27(TNV1): harringtonolide

3.3. Chất 28 (TNV48A): cephalotaxine

3.4. Chất 29 (TNV4): desoxyharringtonine

3.5. Chất 30 (DTV1): ndesoxyharringtonine

3.6. Hoạt tính sinh học của cây đỉnh tùng

3.6.1. Hoạt tính chống oxy hóa của chất 30 (DTV1)

3.6.2. Hoạt tính gây độc tế bào

KẾT LUẬN VÀ KIẾN NGHỊ

TÀI LIỆU THAM KHẢO
DANH MỤC CÁC CHỦ VIỆT TẤT

<table>
<thead>
<tr>
<th>Việt tắt</th>
<th>Viết đầy đủ</th>
</tr>
</thead>
<tbody>
<tr>
<td>¹H-NMR</td>
<td>Phô cộng hưởng từ hạt nhân proton ¹H</td>
</tr>
<tr>
<td>¹³C-NMR</td>
<td>Phô cộng hưởng từ hạt nhân cacbon-13</td>
</tr>
<tr>
<td>IR</td>
<td>Phô hồng ngoại</td>
</tr>
<tr>
<td>s</td>
<td>singlet</td>
</tr>
<tr>
<td>brs</td>
<td>singlet tù</td>
</tr>
<tr>
<td>d</td>
<td>doublet</td>
</tr>
<tr>
<td>t</td>
<td>triplet</td>
</tr>
<tr>
<td>dd</td>
<td>doublet của doublet</td>
</tr>
<tr>
<td>m</td>
<td>multiplet</td>
</tr>
<tr>
<td>J (Hz)</td>
<td>Hạng số tương tác tính bằng Hz</td>
</tr>
<tr>
<td>δ (ppm)</td>
<td>Độ chuyển dịch hóa học tính bằng ppm</td>
</tr>
<tr>
<td>MS</td>
<td>Phô khối lượng</td>
</tr>
<tr>
<td>EI-MS</td>
<td>Phô khối va chấm electron</td>
</tr>
<tr>
<td>SKC</td>
<td>Sắc ký cột</td>
</tr>
<tr>
<td>SKBM</td>
<td>Sắc ký bán mông</td>
</tr>
<tr>
<td>HepG₂</td>
<td>Tế bào ung thư gan người</td>
</tr>
<tr>
<td>MCF7</td>
<td>Tế bào ung thư vú</td>
</tr>
<tr>
<td>KB</td>
<td>Tế bào ung thư biểu mô</td>
</tr>
<tr>
<td>ATCC</td>
<td>Bảo tàng giống chuẩn Hoa kỳ</td>
</tr>
<tr>
<td>OD</td>
<td>Mặt độ hấp thụ quang</td>
</tr>
<tr>
<td>IC₅₀</td>
<td>Nồng độ ức chế 50% số tế bào thử</td>
</tr>
<tr>
<td>EtOAc</td>
<td>Ethylacetate</td>
</tr>
<tr>
<td>DCM</td>
<td>Dichloromethane</td>
</tr>
<tr>
<td>MeOH</td>
<td>Methanol</td>
</tr>
</tbody>
</table>
DANH MỤC CÁC BẢNG

<table>
<thead>
<tr>
<th>Số TT</th>
<th>Nội dung</th>
<th>Trang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bảng 3.1</td>
<td>Số liệu phổ 1H-, 13C-NMR của chất 27 và harringtonolide</td>
<td>43</td>
</tr>
<tr>
<td>Bảng 3.2</td>
<td>Số liệu phổ 1H-, 13C-NMR của chất 28 và cephalotaxine</td>
<td>46</td>
</tr>
<tr>
<td>Bảng 3.3</td>
<td>Số liệu phổ 13C-NMR của chất 29, 30 và desoxyharringtonine, nordesoxyharringtonine</td>
<td>52</td>
</tr>
<tr>
<td>Bảng 3.4</td>
<td>Kết quả thử nghiệm hoạt tính chống oxi hóa của chất 30</td>
<td>56</td>
</tr>
<tr>
<td>Bảng 3.5</td>
<td>Kết quả hoạt tính gây độc tế bào của chất 30</td>
<td>56</td>
</tr>
</tbody>
</table>

DANH MỤC CÁC HÌNH

<table>
<thead>
<tr>
<th>Số TT</th>
<th>Nội dung</th>
<th>Trang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hình 1.1</td>
<td>Amentotaxus hóa thạch</td>
<td>5</td>
</tr>
<tr>
<td>Hình 1.2</td>
<td>Amentotaxus formosana</td>
<td>5</td>
</tr>
<tr>
<td>Hình 1.3</td>
<td>Toreya nucifera</td>
<td>6</td>
</tr>
<tr>
<td>Hình 1.4</td>
<td>Torreya californica</td>
<td>6</td>
</tr>
<tr>
<td>Hình 1.5</td>
<td>Cephalotaxus mannii</td>
<td>7</td>
</tr>
<tr>
<td>Hình 1.6</td>
<td>Cephalotaxus griffithii</td>
<td>8</td>
</tr>
<tr>
<td>Hình 1.7</td>
<td>Cephalotaxus fortunei</td>
<td>8</td>
</tr>
<tr>
<td>Hình 1.8</td>
<td>Cephalotaxus alpine</td>
<td>9</td>
</tr>
<tr>
<td>Hình 1.9</td>
<td>Cephalotaxus latifolia</td>
<td>9</td>
</tr>
<tr>
<td>Hình 1.10</td>
<td>Cephalotaxus koreana</td>
<td>10</td>
</tr>
<tr>
<td>Hình 1.11</td>
<td>Cephalotaxus harringtonii</td>
<td>10</td>
</tr>
<tr>
<td>Hình 1.12</td>
<td>Cephalotaxus hainanensis</td>
<td>11</td>
</tr>
<tr>
<td>Hình số</td>
<td>mô tả hình</td>
<td>tóm tắt mô tả</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>1.13</td>
<td>Cephalotaxus sinensis</td>
<td>11</td>
</tr>
<tr>
<td>1.14</td>
<td>Cephalotaxus wilsoniana</td>
<td>12</td>
</tr>
<tr>
<td>1.15</td>
<td>Cephalotaxus mannii</td>
<td>12</td>
</tr>
<tr>
<td>1.16</td>
<td>Thân cây định từng Cephalotaxus mannii Hook.f.</td>
<td>14</td>
</tr>
<tr>
<td>1.17</td>
<td>Đặc điểm hình thái cây định từng Cephalotaxus mannii Hook. f.</td>
<td>14</td>
</tr>
<tr>
<td>1.18</td>
<td>Cấu trúc hóa học của các alkaloid</td>
<td>20</td>
</tr>
<tr>
<td>3.1</td>
<td>Phổ ESI-MS của chất 26 (epicatechin)</td>
<td>41</td>
</tr>
<tr>
<td>3.2</td>
<td>Phổ 1H-NMR của chất 26 (epicatechin)</td>
<td>41</td>
</tr>
<tr>
<td>3.3</td>
<td>Phổ IR của chất 27 (harringtonolide)</td>
<td>44</td>
</tr>
<tr>
<td>3.4</td>
<td>Phổ 13C-NMR của chất 27 (harringtonolide)</td>
<td>44</td>
</tr>
<tr>
<td>3.5</td>
<td>Phổ IR của chất 28 (cephalotaxine)</td>
<td>47</td>
</tr>
<tr>
<td>3.6</td>
<td>Phổ giân 1H-NMR của chất 28 (cephalotaxine)</td>
<td>47</td>
</tr>
<tr>
<td>3.7</td>
<td>Phổ giân 1H-NMR của chất 28 (cephalotaxine)</td>
<td>48</td>
</tr>
<tr>
<td>3.8</td>
<td>Phổ DEPT của chất 28 (cephalotaxine)</td>
<td>48</td>
</tr>
<tr>
<td>3.9</td>
<td>Phổ IR của chất 29 (desoxyharringtonine)</td>
<td>50</td>
</tr>
<tr>
<td>3.10</td>
<td>Phổ 1H-NMR của chất 29 (desoxyharringtonine)</td>
<td>50</td>
</tr>
<tr>
<td>3.11</td>
<td>Phổ DEPT của chất 29 (desoxy harringtonine)</td>
<td>51</td>
</tr>
<tr>
<td>3.12</td>
<td>Phổ IR của chất 30 (nordesoxyharringtonine)</td>
<td>53</td>
</tr>
<tr>
<td>3.13</td>
<td>Phổ ESI-MS của chất 30 (nordesoxyharringtonine)</td>
<td>54</td>
</tr>
<tr>
<td>3.14</td>
<td>Phổ giân 1H-NMR của chất 30 (nordesoxyharringtonine)</td>
<td>55</td>
</tr>
<tr>
<td>3.15</td>
<td>Phổ DEPT của chất 30 (nordesoxyharringtonine)</td>
<td>55</td>
</tr>
<tr>
<td>Số TT</td>
<td>Nội dung</td>
<td>Trang</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>Sơ đồ 2.1</td>
<td>Quy trình chiết máu vỏ cây dinh tung</td>
<td>33</td>
</tr>
<tr>
<td>Sơ đồ 2.2</td>
<td>Quy trình tách các chất từ cao chiết EtOAc</td>
<td>34</td>
</tr>
<tr>
<td>Sơ đồ 2.3</td>
<td>Quy trình tách các chất từ căn alkaloid</td>
<td>36</td>
</tr>
</tbody>
</table>
MỞ ĐẦU

1. Tính cấp thiết của đề tài

Việt Nam là nước có khí hậu nhiệt đới gió mùa rất thích hợp cho sự sinh trưởng và phát triển của các loại thực vật. Điều này có thể thấy rõ qua sự đa dạng về số lượng và các chủng loại loài thực vật khác nhau. Ngoài vài trù về giả cần bằng sinh thái, cải tạo môi sinh trong việc diều hòa khí hậu thủy văn, các loài thực vật còn là nguồn cung cấp số lượng lớn các hợp chất thiên nhiên có tác dụng được lý thú vì có thể ứng dụng trong nghiên cứu phát triển các thế hệ thuốc mới trong điều trị bệnh như: các bệnh về đường tiêu hóa, tim mạch, hệ hô hấp, bái tiết, máu, ung thư,..... Do đó, nghiên cứu sáng lọc các loại thảo dược có công dụng chữa bệnh nhằm tìm kiếm các hợp chất thiên nhiên mới có hoạt tính sinh học cao hiện nay đang là một hướng đi Ritch cụ thể hứa được rất nhiều quan tâm từ các nhà khoa học.

Hiện nay ứng dụng dược đánh giá là một cần bồi nan y. Mắc dù với sự tiến bộ của khoa học, tiến trình điều trị ung thư vẫn còn gặp rắc rối nhiều khó khăn và thách thức. Nguyên nhân chính là do sự khác biệt lớn giữa tế bào người và các đối tượng được tiến kiểm nghiệm, do độc tính quá cao của hoat chất kháng ung thư với tế bào bình thường, và sự phát triển đa kháng thuốc qua nhanh của tế bào ung thư do vi thuốc điều trị. Vì vậy việc tìm kiếm hoat chất mới ứng dụng trong điều trị các bệnh ung thư luôn là một trong những mục tiêu đặc biệt quan trọng và háp dẫn các nhà nghiên cứu trong lĩnh vực hóa học, sinh học, hóa sinh và y dược học.

Các hợp chất thiên nhiên dòng vai trò quan trọng trong việc nghiên cứu phát triển thuốc điều trị bệnh. Sự đa dạng về cấu trúc, hoạt tính gây độc tế bào cao và chọn lọc của các hợp chất thiên nhiên nội trợ so với các phương pháp nghiên cứu sáng lọc khác, đã chứng tỏ thiên nhiên là nguồn giàu tiềm năng có thể cung cấp các hoạt chất đáp ứng việc nghiên cứu và phát triển thuốc mới trong lĩnh vực hóa học trong. Điều này được chứng tỏ qua xu hướng quay trở lại nghiên cứu và khai thác các lổ chất có nguồn gốc thiên nhiên từ năm 2000. Ước tính từ 1981 đến 2010 có trên 60% số thuốc được cấp nhận trong điều trị bệnh có nguồn gốc từ các hợp chất thiên nhiên, được phân lập từ vi sinh vật trên cả cung như từ các vi sinh vật biển (vinca alkaloid, anthracyclin, podophyllotoxin, taxan, camptothecin,.....).

Theo kết quả điều tra của các nhà thực vật, ở Tây Nguyên có 16 loại thông, trong đó chỉ có loại thông đỏ nam (thông đỏ là dại Taxus wallichiana Zucc.) được nghiên cứu kỹ về thành phần hóa học và hoạt tính sinh học. Ba loại: dinh tùng, thông lá dẹt, thông lá dài đã được nghiên cứu trên thế giới nhưng chưa nghiên cứu nhiều về thành phần hóa học và hoạt tính sinh học. Ở Việt Nam, chỉ có một loại thuộc chi Cephalotaxus là đỉnh tùng (tên khác là phỉ lược bì) có tên khoa học Cephalotaxus mannii Hook.f.. Tuy nhiên ở nước ta hiện nay chưa có nghiên cứu nào về thành phần hóa học cây đỉnh tùng, đó là lý do tôi chọn đề tài:

“Nghiên cứu thành phần hóa học của cây Đỉnh tùng (Cephalotaxus mannii) ở Việt Nam”.

2. Mục tiêu nghiên cứu
Nghiên cứu thành phần hóa học của cây đỉnh tùng (Cephalotaxus mannii Hook.f.).

3. Đối tượng và phạm vi nghiên cứu
Thu thập, xử lý nguyên liệu là vò của cây đỉnh tùng (Cephalotaxus mannii Hook.f.)
Chế biến thử nghiệm vật bằng các dung môi có độ phân cực khác nhau.
Phân lập, tinh chế một số thành phần hóa học có trong vỏ cây đỉnh tung (Cephalotaxus mannii Hook.f.).

Xác định cấu trúc hóa học các hợp chất phân lập được.

4. Phương pháp nghiên cứu
4.1. Các phương pháp nghiên cứu lý thuyết

Phương pháp nghiên cứu và cố lập các hợp chất tự nhiên.

Tham khảo các công trình nghiên cứu trên thế giới về loại đỉnh tung.

Tìm hiểu các tài liệu về đặc điểm hình thái thực vật, thành phần hóa học, ứng dụng của chi và loài cây đang nghiên cứu.

Nghiên cứu lý thuyết về các phương pháp hiện đại để xác định cấu trúc các hợp chất tự nhiên.

4.2. Các phương pháp nghiên cứu thực nghiệm

Nguyên liệu: vỏ cây đỉnh tung được rửa sạch, sấy khô, xay nhỏ. Nguyên liệu đã xử lý được chiết theo trình tự với các dung môi n-hexane, ethyl acetate và methanol sẽ thu được cao n-hexane, cao ethyl acetate và cao methanol.

Phân lập, tách và tinh chế các chất từ cao ethyl acetate bằng phương pháp sắc ký cột, sắc ký lớp mỏng, phương pháp kết tinh phân đoạn.

Các phương pháp xác định cấu trúc: kết hợp các phương pháp đo phổ công hưởng từ hạt nhân một chiều (1D NMR): 1H-NMR, 13C-NMR, DEPT, phổ hồng ngoại (IR), phổ khối MS để xác định cấu trúc các hợp chất phân lập được.
CHƯƠNG 1: TỔNG QUAN

1.1. ĐẶC ĐIỂM CHUNG VỀ HÌNH THÁI CỦA HỌ ĐỈNH TÙNG

(CEPHALOTAXACEAE)

Họ đỉnh tùng có danh pháp khoa học là Cephalotaxaceae, là một nhóm các loại thực vật quả nón, với 3 chi và khoảng hơn 20 loại.

Ba chi của họ Cephalotaxaceae là:

- *Amentotaxus*: Để tùng hay sam bông
- *Cephalotaxus*: Đỉnh tùng hay phi ba mũi
- *Torreya*: Phi

1.1.1. Chi *Amentotaxus*

Amentotaxus là một chi thuộc họ đỉnh tùng Cephalotaxaceae gồm có 5 loài:

Amentotaxus argotaenia
Amentotaxus assamica
Amentotaxus formosana
Amentotaxus poilanei

Amentotaxus yunnanensis

Hình 1.1. Amentotaxus hòa thạch Hình 1.2. Amentotaxus formosana

Các loài của chi Amentotaxus gồm các cây bụi, lá kim cao 2 – 15 mét, phân bố chủ yếu ở Đông Nam Á, Đài Loan, miền nam Trung Quốc, phía đông dãy Himalaya, phía nam Việt Nam. Lá của chúng thường xanh, sắp xếp theo vòng xoắn, thường vân xoắn lại tại gốc lá để xuất hiện theo kiểu hai hàng lá.

Lá có hình mũi mác, dài 4 – 12 cm và rộng 6 – 10 mm, có hai hàng khí khoác màu trắng ở mặt dưới của lá. Các loài của chi này có thể là đơn tính hoặc đơn tính khác gốc. Khí cây có hoa được và hoa cái cũng ở chung một thân thì nón được và nón cái thường nằm trên các chi nhánh khác nhau. Các nón được dài 3 - 15 cm, nhóm lá thành cụm từ 2 – 6 cái, các nón cái mở dần hoặc mở chum và cái trên một thân ngắn. Chúng phát triển trong khoảng 18 tháng, hạt trưởng thành dài 1,5 – 3 cm được bao quanh bởi áo hạt ban đầu có màu cam và chuyển sang màu đỏ khi trưởng thành, dinh của hạt thường nhỏ ra một ít khi áo hạt.

1.1.2. Chi Torreya

Chi Torreya được đặt tên theo nhà thực vật học người Mỹ John Torrey, gồm khoảng 7 loài, chúng có nguồn gốc từ phía đông châu Á và Bắc Mỹ.

Torreya californica

Torreya clarnensis
Hình 1.3. Torreya nucifera

Hình 1.4. Torreya californica

1.1.3. Chi Cephalotaxus

Chi Cephalotaxus (chi đinh tùng) thuộc họ Cephalotaxaceae (họ đinh tùng), bộ Pinales (bộ thông), chi này có tên tiếng Anh là Plum Yew hoặc Cowtail Pine. Chi Cephalotaxus gồm những cây lá kim, phân bố ở phía đông châu Á (trước đây cũng có bằng chứng hóa thạch cho thấy nó đã từng có mặt ở Bắc bán cầu thời kỳ tiền sử). Chi Cephalotaxus có khoảng 11 loài gồm:

* Cephalotaxus oliveri
* Cephalotaxus fortunei
* Cephalotaxus alpina
* Cephalotaxus harringtonii
* Cephalotaxus sinensis
* Cephalotaxus wilsoniana
* Cephalotaxus hainanensis
* Cephalotaxus mannii
* Cephalotaxus koreana
* Cephalotaxus griffithii (Cephalotaxus lanceolata)
* Cephalotaxus latifolia (Cephalotaxus nana)

1.1.3.1. *Cephalotaxus oliveri* [29]

Cephalotaxus oliveri phân bố chủ yếu ở Trung Quốc (Quảng Đông, Quý Châu, Hợp Bác, Hợp Nam, Giang Tây, Tử Xuyên, Vân Nam), Lào, Thái Lan, An Độ. Chúng thường được tìm thấy trong các rừng cây lá kim hoặc rừng cây lá rồng ở độ cao 300 – 1800 m. Loài *Cephalotaxus Oliveri* gồm những cây gỗ nhỏ, cao khoảng 7 mét.

Vỏ màu vàng hoặc màu nâu xám, có vảy. Cành cây phân hình chữ nhật hay hình elip, dài 7 – 9 cm, rộng 3,5 – 5 cm. Lá mọc nghiêng 55 – 70º so với trục của cành, cuống lá dài 0,5mm, phiền lá thẳng hay có hình mũi mác. Hoa mọc phía trên nách lá ở cuối cành, mỗi hoa có 3 – 4 túi phân hoa, quá trình thụ phấn thường vào tháng ba đến tháng tư.

Hình 1.5. *Cephalotaxus oliveri*
1.1.3.2. *Cephalotaxus griffithii* (C. *lanceolata*) [29]
Cephalotaxus griffithii được tìm thấy ở An Đô, Myanmar, Trung Quốc, chúng phát triển trên núi cao 1830 mét. Thân cây cao 20 mét, đường kính 40 cm, vỏ màu tím, mịn, cành lá rụ xuống. Lá mọc nghiêng 45° so với trực của cành, cương lá rất ngắn. Phiên lá mong, màu xanh đậm có hình mũi mác hoặc cong giống luôn liêm. Lá thường dài 4,5 – 10 cm, rộng 4 – 7 mm, mặt dưới lá có các lỗ khí không tròn. Hoa mọc ở phía trên nách lá, phân hoa hình nón, mỗi hoa có 2 – 4 túi phân hoa. Hạt trưởng thành có hình nón dài 3, 5 – 4,5 cm, cuồng dài 1,5 – 2 cm, áo hạt ban đầu có màu xanh và khi chín chuyển sang màu nâu.

1.1.3.3. *Cephalotaxus fortune* [29]
Cephalotaxus fortunei sống trong các rừng cây lá kim hoặc rừng cây lá rồng ở độ cao 200 – 3000m, chúng có nhiều ở Myanmar, Lào, Trung Quốc. Thân cây cao 20 m, đường kính 30 cm hoặc lớn hơn. Vỏ màu nâu đỏ, khi cây trưởng thành thì vỏ bốc dán ra. Cành lá hình chữ nhật phẳng hoặc rụ xuống, cương lá dài 0, 5 – 2 mm. Phiên lá xanh bóng có hình mũi mác hoặc cong giống hình luôn liêm, lâ mềm dài 1,5 – 16 cm, rộng 1,5 – 7,5 mm. Mặt dưới của lá có các dài khí không mâu trường rộng, mỗi dài có 13 – 42 lỗ khí. Quá trình thụ phấn thường vào tháng tư đến tháng năm, hạt trưởng thành vào tháng sau đến tháng mười.
1.1.3.4. *Cephalotaxus alpina* [29]

Cephalotaxus alpina hầu như chỉ tìm thấy ở Trung Quốc trong các khu rừng hơp ở độ cao 1800 – 3700 m, đường kính thân cây 10 – 20 cm. Vò cây màu nâu đỏ, bóng và bị bóc dán khi trưởng thành. Lá dài 1,5 – 13 cm, rộng 2 – 3,5 mm. Hoa không cuống hoặc cuống rất ngắn (2mm).

Quá trình thụ phấn thường vào tháng ba, hạt chín vào tháng chuyến đến tháng muội một.

1.1.3.5. *Cephalotaxus latifolia* [29]

Cephalotaxus latifolia gồm những cây bụi sống ở khu vực miền núi cao 200 – 2500m, chúng phân bố ở Nhật Bản, Hàn Quốc, Trung Quốc. Loài này gồm những cây bụi hoặc cây nhỏ, cao khoảng 4 mét, vò màu nâu xám, cành lá thon dài, phân. Phiến lá màu xanh ô liu, dày, thằng, dài 1,6 – 3 cm, rộng 2,8 – 7 mm. Mắt chồi của lá có dài khi không trăng rộng 0,8 – 1 mm, mỗi hàng có 11 – 15 lỗ khá. Hoa mọc ở nách lá, hình nón, cuồng hoa dài 1,55 – 2,5 mm. Hạt trưởng thành vào tháng chín đến tháng muội một. Hạt giống hình nọn, cuống hạt dài 2- 4mm, có vây.
1.1.3.6. **Cephalotaxus koreana** [29]

Cephalotaxus koreana bao gồm những cây gõ nhỏ thuộc cây lá kim, nó có nguồn gốc từ Hàn Quốc, Nhật Bản và Đông Bắc Trung Quốc. Loài này có chứa catechin-7-O-glucoside, một hợp chất có trong thành phần một số loại thuốc bởi chất này có khả năng chống oxi hóa, bảo vệ tế bào tránh khỏi các tác nhân độc hại. Một số nhà thực vật học xem loài này cùng loại với *Cephalotaxus harringtonii*.

1.1.3.7. **Cephalotaxus harringtonii**

Cephalotaxus harringtonii thường sống trong rừng cây lá kim, rừng cây hổ hổ, thung lũng, trên núi đá vôi, ở độ cao 600 – 3000 m. Chúng phân bố ở Trung Quốc, Đại Loan, Hàn Quốc, Nhật Bản, Đông Bắc Á, Myanmar, Lào, Thái Lan, Việt Nam, Malaysia. Cây cao 10 – 16 m, đường kính ngang ngước 30 – 60 cm. Vỏ cây màu đỏ, màu xám hoặc màu nâu xám. Cành lá hình elip hoặc hình chữ nhật, phẳng, dài 6 – 19 cm, rộng 4 – 10 cm. Là mọc vuông góc hoặc nghiêng so với trục cành, cuống lá 0 – 2 mm. Phiên là màu xanh, mờ, thẳng hoặc hình mũi mác. Đại khí không màu trắng ở mặt dưới lá rộng 0, 8 – 1,2 mm. Loài này thuộc kiểu đom tinh khác gốc. Thủ phần vào tháng ba đến tháng sau, hạt trưởng thành vào tháng mười một. Quả ban đầu có màu xanh xám, khi chín có màu tím đỏ hoặc màu đỏ, có đường gần chây đọng.
1.1.3.8. Cephalotaxus hainanensis [29]

Cephalotaxus hainanensis có nguồn gốc từ Trung Quốc, hiện nay cũng tìm thấy loài này ở Thái Lan, Myanmar.

Cây thường cao 20 m, đường kính thân cây 20 – 50 cm, vỏ cây màu nâu hoặc nâu đỏ, bị bong dán ra khi cây trưởng thành. Cành là hình elip hoặc hình chữ nhật dài 7 – 25 cm, rộng 4 – 10 cm. Là mọc nghiêng so với trục cành, không có cuống lá hoặc cuống rất ngắn 0,3 – 0,5 mm. Phiên là màu xanh đậm sáng bóng hoặc màu xanh ô liu, tương đối mỏng, thẳng hình mũi mác hoặc hơi cong giống hình lưới, dài 1,5 – 4 cm, rộng 2,5 – 4 mm.

Vỏ ngoài của hạt ban đầu có màu xanh lá cây, khi chín có màu đỏ.

1.1.3.9. Cephalotaxus sinensis [29]

Cephalotaxus sinensis là cây bụi thường xanh, cao khoảng 5 m, sống chủ yếu trong rừng cây lá kim, rừng hổ nhor, thung lũng, trên đá sa thạch, đá granit, đá vôi ở độ cao 600 – 3200 m. Loài này được tìm thấy nhiều ở Trung Quốc. Hoa đơn tính khác gốc, thụ phấn nhờ gió, hạt chín có thể ăn được. Cành, lá, rễ và hạt của loài này có chứa nhiều alkaloid, được sử dụng để điều trị bệnh bạch cầu.
1.1.3.10. Cephalotaxus wilsoniana [29]

Cephalotaxus wilsoniana được tìm thấy nhiều ở Đài Loan, chúng sống chủ yếu trong rừng cây lá rộng, rừng cây lá kim hay rừng hơp dổi cao 2000 – 2100 m. Cây cao khoảng 9 mét, lá màu xanh, cong giống hình lưới liễm, dài 3 – 4 cm, rộng 2,5 – 3 mm.

Mặt dưới của lá có hai hàng kích không màu trắng xám. Hoa đơn tính khác gốc, cây ra hoa từ tháng tư đến tháng năm, hạt chín vào tháng mười. Hạt hình trứng dài 2,5 cm, vỏ hạt khi chín có màu nâu đỏ, mỏng và dễ bong, độ dày của mành khoảng 0,4mm. Từ loài đỉnh tùng Cephalotaxus wilsoniana, các nhà hóa học đã phân lập được nhiều alkaloid có khả năng điều trị bệnh ung thư.

1.2. GIỚI THIỆU VỀ CÂY ĐỈNH TÙNG CEPHALOTAXUS MANNII HOOK.F.

1.2.1. Phân bố của loài đỉnh tùng Cephalotaxus mannii Hook.f.

Đỉnh tùng Cephalotaxus mannii Hook.f. mọc rải rác trong tận rừng rậm nhiệt đới, thường ở trên núi cao, trên đất sét – đá, trên đá phiền, sét kết hay đá vôi, ở độ cao 1500 – 2000 m, nơi có ít ánh sáng, trên càng đất đáy và ấm.

Trên thế giới loài đỉnh tùng này chủ yếu phân bố ở Đông Bắc Ấn Độ (Khasi, Jaintia và Naga), Thái Lan, Lào, Myanmar, Việt Nam, Trung Quốc. Ở Trung Quốc loài này sống trong rừng hơp dổi ở các khe núi cao, chúng xuất hiện nhiều ở Quảng Đông, Quảng Tây, Hải Nam (Jianfeng Ling, Limu Ling, Ngũ Chữ Sơn), Vân Nam, Tây Tạng.
Ở Việt Nam đỉnh tùng này được tìm thấy ở Sơn La (Yên Châu), Lào Cai, Hòa Bình, Hà Giang (Yên Minh, Đồng Văn), Cao Bằng (Nguyễn Bình), Hà Tây (Ba Vì), Thanh Hóa, Quảng Trị, Huế, Kon Tum (Đăk Glei, Đăk Tô, SaThây, Kon Plông), Gia Lai, Lâm Đồng (Lang Bian, Di Linh).

Ngày nay đỉnh tùng được ghi nhận với các quận thê nhỏ ở một loạt các vườn quốc gia và khu bảo tồn thiên nhiên như: Vườn quốc gia Ba Vì, Vườn quốc gia Bạch Mã, Khu bảo tồn thiên nhiên Pù Luông, Khu bảo tồn thiên nhiên Pù Huống, Vườn quốc gia Chư Mom Ray và phân lón các khu bảo tồn quanh nũi Bi Dập ở Lâm Đồng.

1.2.2. Đặc điểm hình thái cây đỉnh tùng *Cephalotaxus mannii* Hook.f.

Cây đỉnh tùng: cây gõ to, thân thẳng, tán hẹp, cao 20 – 30 m, đường kính thân 50 – 110 cm. Vỏ màu nâu nhạt hoặc nâu đỏ, bị bong dán ra khi cây trưởng thành. Cành cây hình elip hay hình chữ nhật. Cành mảnh, moc gần như đối xứng và xòe ngang. Lá moc nghiêng 45 – 80° so với trục cạnh. Lá moc xoắn óc xếp thành 2 dải, hình dài dài 2 – 4 cm, rộng 0,2 – 0,4 cm, thẳng hay hoi cong ở gân đầu, cụt hay hoi tròn ở gốc, mặt dưới của lá có 2 dải lỗ khi không màu trắng.
Hình 1.16. Thân cây dinh tửng *Cephalotaxus mannii* Hook.f.

Bông nón dục có dạng hình cấu, gồm 8 – 10 hoa đỉnh ở nách lá trên một cuống có vây. Nọn cái đơn độc hay mọc chum 3 – 5 cái ở nách lá, mỗi nọn gồm 9 – 10 vây, ở mặt bụng mỗi vây có 2 noãn. Hạt đỉnh tửng hình trúng, dài 2,0 – 3,8cm, đường kính 1,0 – 1,5 cm, có mùi cùng ở đỉnh. Cây ra nọn tháng 1 - 2 (hoặc 4 – 5), có hạt tháng 5 – 6 (hoặc 9 – 10) năm sau. Lớp vỏ ngoài của hạt ban đầu có màu xanh, khi chín có màu đỏ, tái sinh bằng hạt kẽm vi hạt thường không phát triển đầy đủ.

Hình 1.17. Đặc điểm hình thái cây dinh tửng *Cephalotaxus mannii* Hook.f.¹

1. Cành không mang nọn
2. Lá, mặt duôi

¹Phạm Văn Quang về 1 và 2 từ DKH 7294, 3 từ P10618, 4 từ HAL 4292
3. Cành mang nón và nón dốc
4. Cành mang hạt và hạt

1.2.3. Công dụng của cây đỉnh tùng Cephalotaxus mannii Hook.f.

Đỉnh tùng có tiêm nang sủ dụng làm cây cảnh do có lá đẹp, các cây non chuối bông và có hình dáng đẹp, còn các cây trưởng thành có kiểu vô độc đào. Gỗ đỉnh tùng có thể thằng, có chất lượng cao, kết cấu rát mịn, debido hiến cỏng, chỉu mới tốt, dễ đánh bóng, dùng làm đồ gố cao cấp, đồ mỹ nghệ, cắn cống cự, dụng cù ván phòng phẩm,…Hạt đỉnh tùng ép đầu dùng chế son, nền, đầu hóa cừng, hạt cũng dùng làm thuốc có tác dụng nhuận phế, cánh ho, tiêu ú. Dân gian cũng dùng vò và làm uống chứa dầu họng và các bệnh về đường hô hấp. Hạt còn có tác dụng sát trùng, tiêu tiêu dùng trị bệnh giun dưa, giun móc và đầy bụng ăn không tiêu. Cành lá có tạc dụng kháng nham, dùng trị u ác tính và bệnh bạch huyết. [1] [2]

Hiện nay, loại đỉnh tùng được xếp vào dạng sắp tuyệt chủng (VUA1d) do diễn tich rừng bị suy giảm trên toàn vùng phân bố. Ở Việt Nam đỉnh tùng được coi là loại hiểm và Việt Nam xếp loại này vào tình trạng sắp bị tuyệt chủng (VU A2cd B1ab, B2ab, C1) do tình trạng khai thác lấy gỗ, hoặc lấy vò làm thuốc đã làm cây chết. Do đó cần có biện pháp bảo vệ và tái sinh loại này, vi đỉnh tùng có nhiều công dụng rất quan trọng. Theo đánh giá của các nhà khoa học, cây đỉnh tùng là loại thực vật có cò sóng sộ, mang nguồn gen quý, hiểm và độc đáo.

1.3. THÀNH PHẦN HÓA HỌC VÀ HOẠT TÍNH SINH HỌC CÁC LOÀI TRONG CHI ĐỈNH TÙNG

1.3.1. Thành phần hóa học của loại đỉnh tùng Cephalotaxus harringtonia [25]

Năm 1972, nhóm nghiên cứu của Powell công bố 5 alkaloid: cephalotaxine (1) và các ester của nó là harringtonine (2), isoharringtonine (3), homoharringtonine (4) và deoxyharringtonine (5) từ hạt của loại đỉnh tùng Cephalotaxus harringtonia K. Koch var. harringtonia cv. Trong đó 1 là chất không có hoạt tính sinh học, nhưng các ester của nó là 2, 3, 4 và 5 là những chất có hoạt tính sinh học mạnh, có khả năng chống lại bệnh bạch cầu.
Các chất 2 và 4 đã được phát triển như là thuốc trong điều trị bệnh ung thư ở Trung Quốc như bệnh bạch cầu cấp tinh nonlymphoid và bệnh bạch cầu hạt mạnh.

Hợp chất 3 cũng được xem là hợp chất có khả năng kháng ung thư. Khả năng gây độc tế bào của 3 cũng được kiểm tra với tế bào bạch cầu ở người HL-60. Kết quả cho thấy với giá trị IC50 = 10^{-7}\text{ mol/l}, tỉ lệ apoptosis có thể đạt 43,8% khi điều trị tế bào HL-60 trong 120 phút. Các chất 2, 4 và 5 cũng được thử hoạt tính
kháng tế bào ung thư bạch cầu ở chuột (P-388) và ở người (lymphoid L1210), chúng có hoạt tính mạnh nhất khi sử dụng với liều lượng 1-2 mg/kg.

Homoharringtonine (4), có tên thương mại là Synribo, là chất rắn dạng bột màu trắng, tan một phần trong nước, tan nhiều trong DMSO, chloroform, ethanol, methanol. Chất 4 được FDA (Food & Drug Administration) chấp nhận trong điều trị bệnh bạch cầu nguyên bào tủy mạn tính đối với bệnh nhân là người lớn. Chất này có hoạt tính sinh học mạnh, kháng tế bào ung thư người: KB (IC\textsubscript{50} = 4 nM), tế bào A549 (IC\textsubscript{50} = 30 nM), hay tế bào chuột P-388(IC\textsubscript{50} = 31, 16 nM). Ngoài ra chất 4 chống lại các tế bào KB-VIN nhện kháng thuốc với giá trị IC\textsubscript{50} = 0,51 mM.

Homoharringtonine có khả năng gây ức sự tổng hợp protein khi dùng liều lượng phù hợp bằng cách tác động lên các ribosome của các tế bào ung thư và ngăn chặn sự tiến triển của các tế bào. Các nghiên cứu làm sàng đã chỉ ra rằng homoharringtonine có hiệu quả trong điều trị bệnh bạch cầu dùng tủy cấp tính (AML), bệnh bạch cầu myeloid mạn tính (CML) và hội chứng myelodysplastic.

Năm 1996, các nhà hóa học Nhật Bản công bố kết quả thu được khi tiến hành phân lập và xác định cấu trúc các alkaloid từ dịch chiết methanol của lá và thân loài định từng Cephalotaxusharringtonia var. drupacea. [10], [11], [12]. Các alkaloid gồm:

(6) 5’-des-O-methylharringtonine
(7) 3’S-hydroxyl-5’-des-O-methylharringtonine
(8) 5’-des-O-methylhomoharringtonine
(9) 5’-des-O-methylisoharringtonine
(10) Cephalotaxidine
(11) Neoharringtonine
(12) Homoneoharringtonine
(13) 3’S-hydroxyneoharringtonine
Hình 1.18: Cấu trúc hóa học của các alkaloid

Các đánh giá về hoạt tính sinh học của các alkaloid cephalotaxidine (10), neoharringtonine (11), homoneoharringtonine (12), và 3’-(S)-hydroxyneoharringtonine (13) trên tế bào bạch cầu ở chuột P-388 cho thấy cả 4 chất này đều có khả năng chống lại tế bào ung thư với các nồng độ gây độc tế bào IC50 tương ứng là 1,8 μg/ ml (10); 0,012 μg/ ml (11); 0,28 μg/ ml (12) và 0,19 μg/ ml (13). Đáng chú ý là hoạt tính kháng tế bào ung thư của hợp chất 11 mạnh gấp 10 lần hợp chất 12 và 13.

1.3.2. Thành phần hóa học của loài đỉnh tùng Cephalotaxus Wilsoniana

Năm 1972, các nhà khoa học R. G. Powell và cộng sự đã phân lập và xác định được cấu trúc của 4 alkaloid từ dịch chất ethanol của cành và lá loài đỉnh tùng Cephalotaxuswilsoniana Hayata, trong đó có Cephalotaxine cùng với 3 hợp chất khác là: wilsonine (14); C-3 epimer –wilsonine (15); acetylcephalotaxine (16)[24].
Năm 2002, nhóm nghiên cứu của Yao-Haur Kuod đã tách từ dịch chiết ethanol của *Cephalotaxus wilsoniana* được các chất: taiwanhomoflavone-B (17); 7,4’,7”-tri-O-methylamentoflavone (18); 6-C-methylnaringenin (19) và apigenin-7-O-β-glucoside (20). Taiwanhomoflavone-B là chất gây độc tế bào với giá trị ED$_{50}$ có giá trị lần lượt là 3,8 và 3,5 µg/ml, có khả năng chống lại ung thư biểu mô KB và tế bào gan Hepa-3B. [32]
20. Apigenin-7-O-β-glucoside

Chất 17 và 20, hainanolide, epi- wilsonine, sugiol và isopimaric acid được kiểm tra trên các dòng tế bào ung thư: KB, COLO-205, Hepa-3B và Hela. Các dữ liệu chỉ ra rằng sugiol và isopimaric là các chất hoạt động, các chất còn lại cho thấy khả năng gây độc tế bào. Đặc biệt hainanolide là chất có hoạt tính mạnh nhất, có khả năng kháng lại 4 dòng ung thư nói trên và đang được nghiên cứu khả năng kháng lại các dòng tế bào ung thư khác.

Năm 2004, Li-Wen Wang và cộng sự công bố kết quả nghiên cứu về loài dinh tùng Cephalotaxus wilsoniana. Các hợp chất C-3-epi-wilsonione (15), taiwanhomoflavone C (21), và một dòng phân của desmethylcephalotaxinone (22) đã được phân lập. Cấu trúc của các chất này được xác định bằng các phương pháp phổ. Trong đó chất 15 có khả năng chống lại tế bào ung thư người: Hep G2, MCF-7, Hep 3B, HT-29 với giá trị IC50 lần lượt là 52,0; 42,0; 52,0 và 24,4 µg/ml.
1.3.3. Thành phần hóa học của loài đỉnh tùng Cephalotaxus mannii

Năm 1979, khi tiến hành nghiên cứu thành phần hóa học loài đỉnh tùng Cephalotaxus mannii trồng ở Ấn Độ, Richard G. Powell tách được từ dịch chiết chloroform của thân và rễ của cây này 3 hợp chất: cephalomannine (23), baccatin III (24) và taxol (25) [20].

Trong hầu hết các loài thuộc chi Cephalotaxus đã được nghiên cứu thì chủ yếu tìm thấy các alkaloid thuộc kiểu harringtonine, nhưng cephalomannine là một alkaloid mới không thuộc kiểu đó, nó là chất gây độc tế bào KB với giá trị LD$_{50}$ = 3,8 x10$^{-3}$ μg/ml và gây ức chế mạnh đối với tế bào bạch cầu PS ở chuột.
Năm 1979, Susan Howids ở trường y Albert-Einstein đã khám phá thấy taxol có nhiều đặc tính quý như khả năng gây độc tế bào bằng cách liên kết với vi ông tubulin trong tế bào làm cho tế bào mất khả năng phân chia dẫn đến gây chết tế bào theo chu trình. Đặc tính mới này đưa taxol là một trong những thuốc chống ung thư đặc biệt với các bệnh ung thư buồng trứng, ung thư vú, ung thư phổi, ung thư Kaposi,… Ngoài ra, taxol còn có khả năng chống bám dính và chống tái hấp nên nó còn được dùng che phủ bên ngoài của stent dòng mạch để chống tái hấp dòng mạch vánh.

1.3.4. Các loại tinh dầu trong một số loại đỉnh tùng [27]

Năm 2005 ba nhà hóa học là Wojciech Cisowski, Irena Mazol và Michal Glensk tiến hành khảo sát các loại tinh dầu có trong lá của 3 loại đỉnh tùng là: *Cephalotaxus sinensis*, *Cephalotaxusharringtonia* var. *drupacea*, *Cephalotaxus fortunei* bằng phương pháp sắc ký ghép nồi khối phổ (GC-MS). Kết quả đã phát hiện trong lá của ba loại cây này có chứa 47 hợp chất, trong đó hai hợp chất chiếm tỷ lệ cao là: α-pinene (18,4% -35,1%); β-caryophyllene (khoảng 22%); delta-carene (khoảng 11%). Ngoài ra một số hợp chất khác như β-elemene, α-humulene, α-selinene, β-selinene, sabinene, camphene, α – cadinol,… chiếm tỷ lệ thấp hơn 10%, và một số hợp chất như: phytol, octacosane, 4-terpineol, γ-terpinene,… tồn tại dạng vệt.
TÀI LIỆU THAM KHẢO

Tiếng Việt

1. Phạm Hoàng Họ (1999), Cây cổ Việt Nam, Quyền I, NXB trè, trang 228.

3. Đinh Gia Thiên (2012), Nghiên cứu thành phần hóa học và hoạt tính sinh học hai loại Sơn Trà (Eriobotrya) và một loại cau chuột (Pinanga blume) của Việt Nam, Luan an than si, Vien Han lam Khoa hoc va Cong nghiep Viet Nam.

Tiếng Anh

Biflavone, Taiwanhomoflavone-B from the Twigs of *Cephalotaxus wilsoniana*”