Area Coverage Problem in Wireless Sensor Networks

Author Names and Affiliations

Dinh Thi Ha Ly - Huynh Thi Thanh Binh
Modeling, Simulation and Optimization Lab
School of Information Communication and Technology
Hanoi University of Science and Technology

Problem Statement

Input
- k: the number of sensor types
- n: the number of sensors
- n_i: the number of sensors for type i ($i = 1..k$), such that $\sum_{i=1}^{k} n_i = n$
- r_i: the sensing radius of sensor for type i ($i = 1..k$)
- W, H: the width and the length of the 2D domain A respectively

Output
- The position for each sensor node

Objective
- Maximize the area coverage of n sensors on A (coA)
 \[\text{coA} = \text{area}(\bigcup_{i=1}^{k} C_i(x_j, y_j) \cap A) \to \text{max} \]

Contributions

- Propose a new function to evaluate quality of solution: Olap
- Propose algorithms to solve this problem:
 - Genetic algorithm (IGA)
 - Particle Swarm Optimization (PSO, DPSO)
 - Cuckoo Search (ICS)
 - Chaotic Flower Pollination (CFPA)
- Analyse convergence of proposed algorithms

Abstract

We are interested in a new model of area coverage problem in wireless sensor networks that is to maximize covered area in a region of interest with a given number of sensors instead of finding the minimum number of sensors such that the region of interest can be completely supervised.

Results

![Image](a)
(a) The best solutions found by IGA (a), PSO (b), ICS (c), CFPA (d) after 30 runnings times on the largest instance.

Future work

- Apply to wireless sensor networks with obstacles
- Apply to dynamic wireless sensor networks
- Integrate with other objectives and constraints:
 - Connectivity assurance
 - Energy optimization

References