Browsing by Subject K2Sadditive

Jump to: 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
or enter first few letters:  
Showing results 1 to 1 of 1
  • 4274-97-8340-1-10-20180718.pdf.jpg
  • Article


  • Authors: Bui, Thi Hang (2018)

  • To find the suitable materials for Fe/air battery anode, in this study Fe2O3 electrodes were prepared using Fe2O3 nanoparticles. The size and morphology of Fe2O3 material were observed by scanning electron microscope (SEM). The electrochemical properties of the Fe2O3 electrode in alkaline solution were investigated by using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The effects of K2S additive in electrolyte solution on the electrochemical characteristics of Fe2O3 electrodes were also investigated. The obtained results show that the additive strongly affected on the impedance, redox reaction rate and cyclability of Fe2O3 electrode

Browsing by Subject K2Sadditive

Jump to: 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
or enter first few letters:  
Showing results 1 to 1 of 1
  • 4274-97-8340-1-10-20180718.pdf.jpg
  • Article


  • Authors: Bui, Thi Hang (2018)

  • To find the suitable materials for Fe/air battery anode, in this study Fe2O3 electrodes were prepared using Fe2O3 nanoparticles. The size and morphology of Fe2O3 material were observed by scanning electron microscope (SEM). The electrochemical properties of the Fe2O3 electrode in alkaline solution were investigated by using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The effects of K2S additive in electrolyte solution on the electrochemical characteristics of Fe2O3 electrodes were also investigated. The obtained results show that the additive strongly affected on the impedance, redox reaction rate and cyclability of Fe2O3 electrode