Please use this identifier to cite or link to this item: http://repository.vnu.edu.vn/handle/VNU_123/25946
Title: ON EXISTENCE OF WEAK SOLUTIONS OF NEUMANN PROBLEM FOR QUASILINEAR ELLIPTIC EQUATIONS INVOLVING p-LAPLACIAN IN AN UNBOUNDED DOMAIN
Authors: Trinh, Thi Minh Hang
Hoang, Quoc Toan
Keywords: Neumann problem;p-Laplacian;Mountain pass theorem;the weakly continuously differentiable functional;MULTIPLICITY
Issue Date: 2011
Publisher: KOREAN MATHEMATICAL SOC, KOREA SCIENCE TECHNOLOGY CTR 202, 635-4 YEOKSAM-DONG, KANGNAM-KU, SEOUL 135-703, SOUTH KOREA
Citation: ISIKNOWLEDGE
Abstract: In this paper we study the existence of non-trivial weak solutions of the Neumann problem for quasilinear elliptic equations in the form -div(h(x)vertical bar del u vertical bar(p-2)del u) + b(x)vertical bar u vertical bar(p-2)u = f(x,u), p >= 2 in an unbounded domain Omega subset of R(N), N >= 3, with sufficiently smooth bounded boundary partial derivative Omega, where h(x) is an element of L(loc)(1)((Omega) over bar), (Omega) over bar = Omega boolean OR partial derivative Omega, h(x) >= 1 for all x is an element of Omega. The proof of main results rely essentially on the arguments of variational method.
Description: TNS06232 ; BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY Volume: 48 Issue: 6 Pages: 1169-1182
URI: http://repository.vnu.edu.vn/handle/VNU_123/25946
ISSN: 1015-8634
Appears in Collections:Bài báo của ĐHQGHN trong Web of Science

Files in This Item:
Thumbnail

  • File : TNS06232.pdf
  • Description : 
  • Size : 129.95 kB
  • Format : Adobe PDF


  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.