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Abstract 

We propose a dynamic model of mortgage credit losses, which is a generalization of the well-

known Vasicek's model of loss distribution. We assume borrowers hold assets covering the 

instalments and own real estate which serves as collateral. Both the value of the assets and the 

price of the estate follow general stochastic processes driven by common and individual factors. 

We describe the correspondence between the common factors and the percentage of defaults, and 

the loss given default, respectively, and we suggest a procedure of econometric estimation in the 

model. On an empirical dataset we show that a more accurate estimation of common factors can 

lead to savings in capital needed to hold against a quantile loss. 
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1. Introduction 

 

One of the sources of the recent financial crisis was the collapse of the mortgage business. Even 

if there are ongoing disputes about the causes of the collapse, wrong risk management seems to 

be one of them. Hence, realistic models of the lending institutions' risk are of great importance. 

The textbook approach to the risk control of the loans' portfolio, which is also a part of the IRB 

standard (Bank for International Settlement, 2006), is that of Vasicek (Vasicek, The Distribution 

of Loan Portfolio Value, 2002) who deduces the rates of defaults of the borrowers, and 

consequently the losses of the banks, from the value of the borrowers' assets following a 

geometric Brownian motion. 

In particular, the Vasicek's model assumes that the logarithm of the assets of the i-th individual 

fulfills 

                    . 

Here,      is the individual’s wealth at time zero,   and   are constants, and    is a random 

variable fulfilling 

       , 

where   is the common factor having a centered normal distribution and         are i.i.d. 

centered normal individual factors, independent of   (Vasicek, Probability of Loss on Loan 

Portfolio, 1987). 

Default of an individual is defined by the state where the value of an individual’s assets 

decreases below a certain threshold  ; this threshold is usually interpreted as the sum of the 

individual’s debts (including installments at least). The probability of default is then 

     [       ]   [     ],    
               

 
. 
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After some calculations (cf. (Vasicek, Probability of Loss on Loan Portfolio, 1987)) we obtain 

the default rate (DR), defined as 

   
                  

               
, 

approximately fulfilling  

 [    ]   (
(√   )                 

√ 
) 

given a sufficiently large number of loans. Here,   denotes the standard normal cumulative 

distribution function and 

      (     )  
      

              
. 

It follows that the distribution of    is “heavy-tailed,”
1
 with the “heaviness” of the tail 

dependent on the correlation  . 

We generalize the Vasicek's model in three ways:  

1. We add dynamics to the model (note that the Vasicek's model is only one-period one).  

2. We allow more general distribution of the assets. In a nutshell, the main advantage of 

our model is that asset increments can be described by any continuous distribution, 

which potentially enables us to use a distribution that is able to fit a particular dataset 

better than the normal one. 

3. We add a sub-model of the losses given default which allows us to calculate the overall 

percentage loss of the bank.  

Similarly as in the Vasicek's paper, in our model, there is a one-to-one correspondence between 

the common factors and the default rate (DR), and the loss given default (LGD), which allows 

for econometric estimation of the bivariate series of DR's and LGD's. Thus, these factors can 

have a general distribution of any kind. 

                                                           
1
 This means that it cannot be successfully approximated by a light-tailed variable. 
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To our knowledge, only simplified dynamic generalizations of the Vasicek's model incorporating 

the losses given default have been published (Roesch & Scheule, 2009). However, our approach 

to the dynamics and/or common modelling of DRs and LGDs is not the only one:  

•  There are more ways to get the relevant information from the past history of the 

system, e.g. credit scoring from which the distribution of the DR may be obtained in a 

standard way (Vasicek, The Distribution of Loan Portfolio Value, 2002) where the 

distribution of the losses is a function of the probability of default) or observing the 

credit derivatives (d'Ecclesia, 2008). Another approach to the dynamics could be to 

track the situation of individual clients (Gupton, Finger, & Bhatia, 1997) or to use 

affine processes (Duffie, 2005). The usefulness of our approach, however, could lie in 

the fact that it is applicable "from outside" in the sense that it does not require a bank's 

internal information. 

•  Numerous approaches to the joint modeling of DR and the LGD have been published 

(see e.g. (Witzany J. , 2010), (Yang & Tkachenko, 2012), (Frye, 2000) or (Pykhtin, 

2003) and the references therein.) The novelty of our approach, however, is the fact 

that the form of the dependence of the LGD on the common factor driving the LGD, is 

not chosen ad-hoc, but it arises naturally from the matter of fact. In particular, it links 

the LGD to the price of the property serving as a collateral. (Gapko & Šmíd, 2012) 

•  In its general form, our approach does not assume particular dynamics of the common 

factors econometric model of which can thus be “plugged” into the model. In contrary 

to (Gapko & Šmíd, 2012) - a simpler version of our model - multiple generations of 

debtors are tracked in the presented paper. 

 

Our results show that applying our multi-generational model to a specific dataset leads to a much 

lower variance in the forecasted credit losses than in the case of the single-generation model. 

Mainly thanks to the fact that our econometric model uses macroeconomic variables to explain 

common factors, which is supported by several recent articles, eg (Carling, Jacobson, Lindé, & 

Roszbach, 2007). It is able to explain changes in risk factors more accurately than a simple 
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model based purely on extraction of common factors from the series of DRs and LGDs. The 

higher accuracy of the loss forecast then naturally leads to more realistic determination of a 

quantile loss. In our particular case, the 99.9th quantile loss is lower than in the Vasicek's model.  

The paper is organized as follows: after the general definitions (Section 2), where the models of 

DRs and LGDs are constructed and the procedure of econometric estimation of the model is 

proposed, Section 3 describes the empirical estimation and finally in Section 4, the paper is 

concluded. 

 

2. The Model 

 

In the present section, we introduce our model and discuss its estimation. Proofs and some 

technical details may be found in the Appendix. 

 

2.1 Definition 

Let there be (countably) infinitely many potential borrowers. At the time      , the i-th 

borrower takes out a mortgage of amount   , with help of which, he buys a real property with 

price  
  
      for some nonrandom    . The mortgage is repaid by instalments amounting to 

       , at each of the times                 , where     - the duration of the 

mortgage - is the same for all the borrowers for simplicity. 

The assets of the i-th borrower evolve according to stochastic process   
  such that, between the 

times the installments are paid,   follows a Geometrical Brownian Motion with stochastic trend, 

i.e.  

   
      

    {       
 }                    , 
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where    is a common factor (e.g. a log stock index) and   
      

   , is a normally distributed 

individual factor for each     with the same variance for each   (  stands for a one-period 

difference). 

The instalments are paid by means of selling the necessary amount of the assets, i.e.  

  
     

                        . 

If   
    then we say that the borrower defaults at  . 

The price   
  of the real property serving as a collateral of the mortgage of the i-th debtor fulfils 

  
     {       

 }     
           , 

(recall that  
  
     ), where    is another common factor (e.g. the logarithm of a real estate 

price index) and    
          is an individual factor.

2
  

The exposure at default   
  (i.e. the remaining debt) of the i-th borrower at time t fulfils 

  
   (    )             

for some decreasing function fulfilling               if     or     (the shape of   may 

depend on the way of interest calculation and the accounting rules of the bank). 

Finally, let  

         

be the ratios of “newcomers” to the size of the overall portfolio at the times 1, 2, …. 

Assume that the increments of the individual factors  

   
     

     
     

    

   
     

     
     

    

                                                           
2
 It would not be difficult to have    

  and    
  non-normal for the price of loosing closed form formula for function 

  (see further). 
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are mutually independent and independent of               and that, for any i, the initial wealth 

and the size of each mortgage depend, out of all the remaining random variables, only on    , 

where 

                                  

is the history of the common factors and the percentages of the newcomers up to the start of the 

mortgage (see (C) in Appendix [sec:Appendix] for details). 

Until the end of the Section 2, fix     and assume that the potential borrowers are numbered so 

that only those who are active since     to   (i.e. those with           ) and who did 

not default until     are numbered.  

 

2.2 Default rate 

Introduce a zero-one variable   
  indicating whether the i-th borrower defaults at t:  

  
   [  

   ]   [   
     ]   [   

   ]   [      
         

      ], (1) 

where 

  
  

  
 

  
 

is the value of assets per unit of the mortgage. The first topic of our interest will be the 

percentage of defaults (i.e., the percentage of the debtors who defaulted at t): 

         
 

 
∑   

  
   . 

 It is clear from (1) that we may assume, without loss of generality, that     ̇    (if not than we 

may subtract      from the increments of the common factor). Moreover, we may assume that 

the variance of     is unit (if not then we could divide        
   and    

  by its standard 

deviation).  
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Thanks to Lemma 8 (see Appendix A.1), we may, similarly to (Vasicek, 2002), apply the Law of 

Large Numbers to the conditional distribution of    given    to get 

       
 |        

   |    

and compute it, using the Complete Probability Theorem, by formula 

    
   |    ∑       |       

   |        

   

     

 

From the definitions, and thanks to      (see Appendix A.1), 

    
   |        (       

         
   |     )    

      | 
        

where   
   |     is the c.d.f. of        

     
  given             , and because 

      |          |      by Lemma 7, we are getting: 

Proposition 1 

   ∑               
      |       

   
     , (2) 

where 

                   |       

♣ 

 Note, that, by Lemma 6 (see Appendix A.1),   
   |         is a strictly increasing c.d.f. of a 

convolution of two distributions, namely that of        
  and the standard normal one. Note also 

that        is in fact the percentage of debts, started at  , and present in the portfolio between 

times     and  . 

Corollary 2 

For each     , there exists a one to one mapping between    and    given by (2). In particular, 

       
     |       
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        ∑            
   |       

     . (3) 

♣ 

2.3 Loss given default 

Since the amount which the bank will recover in case of the default of the i-th debtor at time   is 

  
        

    
  

      (     { ∑ [       
 ]

 

      

}   (    ))

      {   (  ∑ [       
 ]

 

      

̇

)     ( (    ))} 

we get that the percentage loss given default   , i.e. the ratio of the actual losses and the total 

exposure at default, is 

      
   

∑   
         

   

∑   
    

   

      
   

∑   
    

   

∑   
    

   

 

 

Proposition 3 

     
∑              (     )

   
     

∑          
   
     

                            (4) 

where 

                   
      |                                 |              

and 

          {
 

 
     } (

    

√  
 √  )      [   (

    

√  
)] 

      (    )        



10 
 

and where   is the standard normal distribution function. The function    is strictly increasing. 

Proof. See appendix A.2 

♣ 

Corollary 4 

For given      there is one-to-one mapping between    and   , given by (4). In particular, 

          
           (5) 

where 

        
 

∑        
∑        

    (         )

   

     

 

 ♣ 

 

2.4 Next period  

Now, let us proceed to the portfolio at the next period: After renumbering (excluding the 

defaulted borrowers and adding the newcomers) we get. 

Proposition 5 

         {

  

                

 
       

      
          

         

 

where 

              |            

          
    

      |    

         |   (    
      |      )         

 

and 



11 
 

 [     
   |           ]  {

       
   

  
       |       

      |    

    
      |    

     

       

         
 

for each     where          [       |       ]          

Proof. See appendix A.3 

♣ 

2.5 Econometrics of the Model 

Say we have the sample  

                              (6) 

at our disposal and want to infer (some of) the parameters of our model, whose complete list is  

 (          )                        (7) 

Clearly, some further simplification of such a rich parameter space has to be done. For simplicity 

and computability, we decided to postulate values of all the parameters except of  

 (          ) in the empirical part of our paper so that we are able (recursively) to evaluate 

the transforming function    and    independently on unknown parameters and the econometrics 

of the model reduces to the one of the factors Y and I. In other words, the values of all parameters 

except of  (          ) were chosen based on empirical observations or expert judgment. 

 

 

2.6 Numerics of the Model 

Generally,    is a convolution of truncated (normal) distributions (the defaults are due to the 

truncations). We chose the Monte Carlo simulation as the easiest way of the functions evaluation 

which was done in the Mathematica software. 
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Since the formula for    is recursive and involves            , which are unknown at the time 

   we acted as if the borrowing began at    , i.e. we took        and        for all    . 

 

3. Empirical estimation 

 

In this part, we describe the estimation procedure of the previously introduced model. The final 

result of the estimation procedure is a loss distribution and, in particular, a mean predicted loss 

and a predicted loss quantile on a one-quarter horizon.  

The estimation process can be divided into three separate parts: the extraction of both common 

factors from a historical dataset, a prediction of these factors based on an econometric model and 

finally, the calculation of future mean and quantile losses given the future values of the factors. 

 

3.1 Data description 

We used the same dataset as in (Gapko & Šmíd, 2012), ie, a historical dataset of mortgage 

delinquencies and started foreclosures, provided by the Mortgage Bankers Association. In our 

model we took the 90+ delinquency rate at the time   as the default rate,   . Unfortunately, to 

our knowledge, there is no nationwide public database with banks’ losses from mortgage 

portfolios that could be considered as our loss given default,   . Therefore we constructed its 

proxy by the rate of started foreclosures from the Mortgage Bankers Association and an index of 

median prices of new homes sold from the US Census Bureau. In particular, because the 

foreclosures dataset consists of all mortgage loans that fell into the foreclosure process and does 

not describe how successful the foreclosure process was, we discounted the foreclosures by 

estimated average values of the collaterals in the portfolio; even if, as we realized, our proxy of 

the LGD is apparently an ad hoc one, it reflects the fact that the LGD grows with decreasing 

prices of collaterals.  

Formally, we put  
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where    is the 90+ delinquency rate at the time   and 

   
  

    
  

where    is the unadjusted rate of started foreclosures from the original dataset and    an 

estimated average value of collaterals in the portfolio calculated as  

   ∑
    

    

   

     

 
  

  
 ∑           

   

     

 
  

  
  

where      is the number of individuals in the  -th generation at the time  , 
    

  
 the proportion of 

individuals of the  -th generation in the whole portfolio at the time  ,    the value of the house 

price index at the time   (recall that we assume unit price of all the collaterals at the start of the 

mortgage and that      is a function of the observed data).  

Both datasets entering our calculations are depicted on the following chart (in percentage of the 

total outstanding balance). 

 

Figure 1: 90+ delinquency rate    and the loss given default     
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3.2 Choice of Parameters  

In order to extract the rate of default and the loss given default, which is the first step in the 

estimation, we needed to restrict the number of parameters in the extracting functions given by 

(3) and (5). The parameters 

                      

were further postulated as follows: 

 The length of the mortgage,   was set to 120 quarters (30 years) based on the long-term 

average taken from the U.S. Housing Market Conditions survey published quarterly by 

the U.S. Department of Housing and Urban Development 

 The variance of   (the individual factor driving the property price), ie,   of the 

distribution with the c.d.f. equal to   was set at 0.12 because this value was found to be 

the one maximizing the log-likelihood in the single-generation model (Gapko & Šmíd, 

2012) 

 The size of the loan-to-value ratio   at the beginning of the loan is set to 1 (ie, the full 

mortgage nominal is collateralized by the borrower's property); this is a simplification 

and a possible point for the model enhancement. 

 The quarterly interest rate, which determines the function  , is set to 1%; the function   

uses the quarterly simple compounding interest to determine what amount of a mortgage 

remains to repay 

 The standard deviation of each newcoming generation's wealth    is assumed to be 

normal with standard deviation equal to 5 

 The parameter   - ie, the expected size of the mortgage, is assumed to be the same for all 

borrowers 
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Other parameters, eg, the split on individual generations in a given period, can be calculated 

directly or derived from our assumptions. For a better understanding of how the original datasets 

  and   are translated into the common factors   and  , resp., we include a comparison of   and 

  (Figure 2) and   and   (Figure 3). In the Figures 2 and 3, the values of the time series   and   

were adjusted to overlap the corresponding time series   and  , resp. (i.e.   multiplied by 100 

and   multiplied by 10, so that the lines benefit from a single scale representation). 

 

Figure 2: The comparison of   (blue) and   (violet) 
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Figure 3: The comparison of   (blue) and   (violet) 

From the beginning of the dataset, there was a sustained growth of house prices, which caused 

the collateral to exceed the mortgage outstanding amount and thus decreased the LGD. However, 

in 2007, there was a downturn in housing prices and this is reflected in the increase of the LGD. 

From the Figures 2 and 3 we can graphically deduce that the evolution of both common factors 

might follow some trends, which suggests that there could be a dependence on several 

macroeconomic variables or stock market indexes. Thus, we chose a Vector Error Correction 

Model (VECM) with several exogenous macroeconomic variables, namely GDP, unemployment, 

interest rates, inflation, S&P 500 stock market index and the EUR/USD exchange rate, to capture 

the joint dynamics of the common factors   and  . Note that we couldn't use any kind of real 

estate price index as the LGD values were adjusted by using such an index. Adding it would 

establish an unsought autocorrelation into the VECM error term. 

 

3.3 Estimation and prediction 

The VECM estimation was performed in the Gretl software. First, the stationarity tests of both 

VECM endogenous variables, ie   and  , was performed and in both cases, the augmented 

Dickey-Fuller test rejected the stationarity. The Johansen's cointegration test rejects the absence 

of the first order cointegration between   and   on the 10% probability level. Moreover, the first 

VECM equation, explaining  , shows that it strongly depends on the year-on-year GDP growth 

rate. No other macroeconomic variables considered were found significant in this equation, even 

after lagging them up to four quarters. The second VECM equation, explaining  , also shows 

dependency on one macroeconomic variable - unemployment rate. Therefore we left the two 

significant variables, ie, the GDP year-on-year growth rate and the unemployment rate in the 

model. The following table summarizes our findings. It is obvious that the model is able to 

explain   with a much higher predictive power than  , which is probably caused by the fact that 

changes of   are based on a proxy instead of the actual LGD. 
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Figure 4: Returns of   (blue) and   (violet) 

 

 

 

 

Dependent variable   (s.e.)   (s.e.) 

constant -0.0098 (0.03) -0.14*** (0.04) 

d1 PD common factor 0.96*** (0.04) -0.17*** (0.05) 

d1 LGD common factor 0.13* (0.07) -0.24*** (0.09) 

GDP year-on-year 0.72*** (0.23) 0.027 (0.3) 

Unemployment rate -0.05 (0.39) 1.07** (0.5) 

Error correction term -0.0067 (0.004) 0.016*** (0.006) 

Adjusted R2 91% 15% 
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Table 1: results of the PD & LGD common factors VECM estimate 

Thus the final pair of VECM equations is: 

                                                                

     

                                                                   

We also performed tests of both normality and autocorrelation of residuals. All tests show that 

error terms of both equations are not autocorrelated and approximately normal. 

After the model is estimated, we constructed a prediction of the common factors. To calculate 

the predicted   and  , we needed a prediction of exogenous variables in the model, ie, the GDP 

y/y growth rate and the unemployment rate. As we measured the credit risk only, without an 

influence of deterioration in economic conditions, we assumed that the unemployment rate 

stayed for the prediction on its last value and the future GDP change is zero. The following two 

charts show the development of   (Figure 5) and   (Figure 6), including the predicted value. 
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Figure 5: Development of   with the predicted value (blue) and the prediction standard error (green) 

Yt history 

Yt forecast 

95% CI 
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Figure 6: Development of   with the predicted value (blue) and the prediction standard error (green) 

 

3.4 Prediction of losses 

The remaining step was to predict a mean and a desired quantile losses. This was done by an 

inversion function to the factor extraction functions (see (3) and (5)) in the Mathematica 

software, by which we obtained predicted DR and LGD. These two values were then multiplied 

to get a loss. The mean loss prediction is quite straightforward as we already have the predicted 

values of both common factors. However, the quantile loss has to be calculated from the quantile 

value of both common factors. To be able to compare our quantile loss with the IRB model, we 

chose to simply calculated the 99.9
th

 quantiles of   and the 99.9
th

 quantile of   and then multiply 

them
3
. The calculation of quantiles of   and   from the quantiles of   and   was done by the 

                                                           
3
 The 99.9th was chosen to reflect the IRB, which calculates the capital requirement for credit risk as a difference 

between the mean (expected) loss and the 99.9th quantile loss. Usually, the 99.9
th

 quantile loss is interpreted as a 

multiplication of the 99.9
th

 quantile of Q and a “downturn” LGD (usually calculated as a 95
th

 quantile of L). 

It history 

It forecast 

95% CI 
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function (2) for   and by (4) for  . Quantiles of common factors were obtained from their 

prediction standard error and the assumption that error terms of both VECM equations (see Table 

1) are normally distributed. (Recall that we were not able to reject the normality). Thus, 

                                  

                           

where           and           are 99.9th quantiles of the factors   and  , resp.,      and      are the 

common factors predictions,    and    the regression standard errors and          and         

the 99.9
th

 and the 95
th

 quantile of the standard normal distribution, resp. We constructed a one-

quarter quantile loss prediction. 

Because the Basel II IRB method calculates a twelve month forward quantile loss, to get a one 

quarter loss we divided the PD input (last DR value) by two (because the debtor’s assets are 

assumed in the IRB model to be normally distributed, the quarterly PD is exactly one half of the 

one-year PD, according to the convolution of the normal distribution). We used just one quarter 

for all the predictions. Both the comparison of the predictions of mean losses calculated by our 

proposed model and the IRB, and the comparison of the predictions of quantile loss are 

summarized in the Table 2. 

Model Our IRB 

mean loss 0.84% 0.78% 

99.9th quantile loss 1.23% 3.75% 

Table 2: comparison of our model's and IRB losses 

For the IRB model we have used the last value of default rate as an input for the PD and the last 

value of our adjusted LGD time series for an LGD. The difference between the IRB and our 

model computations is that the IRB treats LGD as a fixed variable, whereas in our proposed 

approach, we constructed a model for LGD predictions. As we can see from Table 2, our model 

predicts much lower quantile loss. This is due to the fact that the explanation of the development 

of default rates and LGD by our model is much neater than a crude ad-hoc approach of the IRB 

and thus the standard deviation of loss is lower. 
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4. Conclusion 

 

In the present paper, we suggested an estimable model of credit losses. The model is based on 

the assumption of underlying factors that are driving the probability of default and the loss given 

default. The two novelties of our approach are the multigenerational dimension of the model and 

the estimated relationship between underlying factors and a macroeconomic environment. 

The empirical estimation shows that the model leads to more accurate predictions of future mean 

and quantile losses than in the Vasicek's framework. This might lead to a saving in the amount of 

capital that is needed to cover the quantile loss. 

Even if the model is rather general and thus a bit more complicated to estimate due to the number 

of parameters, a bit less could be assumed if a user wished it, especially  

 The distribution of the individual factors need not be the same in all periods but it might 

depend on the time and on the past of the common factor 

 A dependence of the individual factors    
   and    

  could be established 

While the first generalization would not change our formulas much (some indexes would have to 

be added to the present notation) the second one would bring the necessity to work with a 

conditional distribution of    given not defaulting, for which no analytical formula exists, even 

in the simple case of normal factors. 
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Appendix 

 

A.1 Definitions and Auxiliary Results 

First, we have to take into account that the borrowers have to be renumbered in each period in 

order to remove those who defaulted or fully repaid their mortgage and add those who came 

newly. Let us assume that the renumbering at   is done as follows: once the indexes  

            are assigned, a random variable   
  is drawn from the Bernoulli distribution with 

parameter   . The index   is consequently given to a newcomer, if   
    or to the first 

unindexed borrower who did not default at   and does not repay fully his mortgage at  , if  

  
 
  . Let us denote   

  the starting time of the debtor, indexed by   at  . 

Now, denote, 

     ̇ 
    

   ̇ 
    

     

and 

            
    

    
    

        

for     and note that, as the distribution of   
  depends only on   , which itself is a part of the 

vector   , we have that   
  is conditionally independent of      

    
      

      
       given 

  . 

Further, we have to formulate rigorously the assumptions concerning the distribution of the 

initial wealth and the property price. In particular, we assume that, for each  , (      

 )  

(     
      

), where  

   

for any   and  , (         ) is conditionally independent of    (         )   
 given   , and the 

conditional distribution of (         ) given    equals for all  .  

Finally, denote                 and assume that  
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variables  ̇ 
    

   ̇ 
    

    are mutually independent and independent of       for any    , 

such that   
  has the same strictly increasing continuous conditional c.d.f. given    for each  . 

Now, let us prove that  

Lemma 6 

For each     the following is true:  

     

For any  ,  ̇   
    is conditionally independent of    (    

 
     

 
)
   

 given     
      , such that 

    
  has the same strictly increasing continuous conditional c.d.f. for each i.  

 

Proof. Let us proceed by induction: For    , the assertion follows from     . Now, assume 

     and try to prove       . Let    . From the basic properties of conditional expectations, 

we have 

 (  
   |  

     (  
 )

   
 (  

 )
   

) 

 {
 (  

   |  
     (  

 )
   

 (  
 )

   
)   (  

   |  )                                                [  
   ]

 (   
    |  

     (  
 )

   
 (  

 )
   

)   (    |  
     (  

 )
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where  
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and     is the index of the borrower indexed by   at   given the numbering from    . On the set 
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(the last “=” is due to     ) where, by the textbook calculation 

                                           
  

       |       
      |    

    
      |    

 

on the set   [  
 
     

      
 ]. Now, because [    ]    and [    ]    cover the set 
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   ], we have by Local Property  ((Kallenberg, 2002), Lemma 6.2) that  
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where the last "=” is due to the conditional independence of    of   , hence        is proved. 

♣ 

Lemma 7 

For any    ,   
  is conditionally independent of       

 
    
̇ , given   . 
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Proof. For     the Lemma follows from     . Let     and let the Lemma holds for 

     . ie, 

 (    
 |(  

 
)
   

  ̇ )   (    
 |  ̇   )  

By our construction,   
  is a function of     

   where    is defined by the previous proof. Similarly 

to the previous proof we show that, on [    ] the probability that   
    given all the variables 

    
  depends only on            and on   . 

♣ 

Lemma 8 

  
    

    are mutually conditionally independent given   . 

 

Proof. It follows from Lemma 6 that   
  is conditionally independent of (  

      
 )

   
 given 

(       
 ). Thanks to Lemma 7 and independence of variables    

  we get that      
  is 

conditionally independent of (  
      

 )
   

 given    which gives the Lemma by the Chain rule 

for conditional independence ( (Kallenberg, 2002), Proposition 6.8). 

 

A.2 Proof of Proposition 3 

By (Kallenberg, 2002), Corollary 5.  
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Further, by Lemma 8 and by the independence of variables  , the summands in both sums are 

conditionally independent given   , hence, by the Law of large numbers,  
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and analogously, 
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As to  , we are getting  
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where      is a c.d.f.          - when we put   √  , we get 
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The monotonicity is proved by the fact that 
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A.3 Proof of Proposition 5 

The fact that         follows from the definition, as well as the fact that        for      . 

Let        , and let    be the previous index of the borrower indexed by   at   (it can be eg, 

a zero if the borrower is a newcomer). Clearly,   
      

        
     which implies 
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(9) 

Further, as 
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we have, from the conditional independence  
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which, not being dependent on  , may be pulled out from the sum in (9).  

The formula for    is proved similarly to (8). 
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