Browsing by Author Kotelenez, Peter

Jump to: 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
or enter first few letters:  
Showing results 1 to 1 of 1
  • 3095.pdf.jpg
  • Book


  • Authors: Kotelenez, Peter (2008)

  • This book provides the first rigorous derivation of mesoscopic and macroscopic equations from a deterministic system of microscopic equations. The microscopic equations are cast in the form of a deterministic (Newtonian) system of coupled nonlinear oscillators for N large particles and infinitely many small particles. The mesoscopic equations are stochastic ordinary differential equations (SODEs) and stochastic partial differential equatuions (SPDEs), and the macroscopic limit is described by a parabolic partial differential equation. A detailed analysis of the SODEs and (quasi-linear) SPDEs is presented. Semi-linear (parabolic) SPDEs are represented as first order stochastic transp...

Browsing by Author Kotelenez, Peter

Jump to: 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
or enter first few letters:  
Showing results 1 to 1 of 1
  • 3095.pdf.jpg
  • Book


  • Authors: Kotelenez, Peter (2008)

  • This book provides the first rigorous derivation of mesoscopic and macroscopic equations from a deterministic system of microscopic equations. The microscopic equations are cast in the form of a deterministic (Newtonian) system of coupled nonlinear oscillators for N large particles and infinitely many small particles. The mesoscopic equations are stochastic ordinary differential equations (SODEs) and stochastic partial differential equatuions (SPDEs), and the macroscopic limit is described by a parabolic partial differential equation. A detailed analysis of the SODEs and (quasi-linear) SPDEs is presented. Semi-linear (parabolic) SPDEs are represented as first order stochastic transp...