Browsing by Author Tran, Thi Hai

Jump to: 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
or enter first few letters:  
Showing results 1 to 3 of 3
  • 21.pdf.jpg
  • Article


  • Authors: Nguyen, Viet Tuyen; Tran, Thi Hai; Nguyen, Thi Hong; Phan, Thi Thanh Hong; Ho, Khac Hieu (2017)

  • The anharmonic correlated Debye model has been developed to investigate the pressure effects on the extended X-ray absorption fine structure (EXAFS) Debye-Waller factors of metals. The recent well-established Grüneisen parameter expressions have been applied to formulate the pressure-dependent analytical expressions of the effective spring constant, correlated Debye frequency and temperature. Combing with the anharmonic correlated Debye model, the expression of EXAFS Debye–Waller factor under pressure can be derived. Numerical calculations, performed for Fe and Cu metals show reasonable agreement with experiments.

  • 4092-97-8102-1-10-20171016.pdf.jpg
  • Article


  • Authors: Tran, Thi Hai (2017)

  • The pressure effects on melting temperatures of iron have been studied based on the combination of the modified Lindemann criterion with statistical moment method in quantum statistical mechanics. Numerical calculations have been performed up to pressure 150 GPa. Our results are in good and reasonable agreements with available experimental data. This approach gives us a relatively simple method for qualitatively calculating high-pressure melting temperature. Moreover, it can be used to verify future experimental and theoretical works. This research proposes the potential of the combination of statistical moment method and the modified Lindemann criterion on predicting high-pressure me...

  • 12.pdf.jpg
  • Article


  • Authors: Tran, Thi Hai (2017)

  • A theory is given of the mobility of a two-dimensional electron gas at high temperature in single-side square quantum wells. Within the variational approach, we obtain analytic expressions for the carrier distribution, and autocorrelation functions for various scattering mechanisms. We examine the dependence of the mobilities of carriers on the temperature. Our theory is able to well reproduce the recent experimental data on transport in 1S-doped square QWs, e.g., acoustic-phonon partial mobility dependence on temperature for single-side modulation doped square quantum wells.

Browsing by Author Tran, Thi Hai

Jump to: 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
or enter first few letters:  
Showing results 1 to 3 of 3
  • 21.pdf.jpg
  • Article


  • Authors: Nguyen, Viet Tuyen; Tran, Thi Hai; Nguyen, Thi Hong; Phan, Thi Thanh Hong; Ho, Khac Hieu (2017)

  • The anharmonic correlated Debye model has been developed to investigate the pressure effects on the extended X-ray absorption fine structure (EXAFS) Debye-Waller factors of metals. The recent well-established Grüneisen parameter expressions have been applied to formulate the pressure-dependent analytical expressions of the effective spring constant, correlated Debye frequency and temperature. Combing with the anharmonic correlated Debye model, the expression of EXAFS Debye–Waller factor under pressure can be derived. Numerical calculations, performed for Fe and Cu metals show reasonable agreement with experiments.

  • 4092-97-8102-1-10-20171016.pdf.jpg
  • Article


  • Authors: Tran, Thi Hai (2017)

  • The pressure effects on melting temperatures of iron have been studied based on the combination of the modified Lindemann criterion with statistical moment method in quantum statistical mechanics. Numerical calculations have been performed up to pressure 150 GPa. Our results are in good and reasonable agreements with available experimental data. This approach gives us a relatively simple method for qualitatively calculating high-pressure melting temperature. Moreover, it can be used to verify future experimental and theoretical works. This research proposes the potential of the combination of statistical moment method and the modified Lindemann criterion on predicting high-pressure me...

  • 12.pdf.jpg
  • Article


  • Authors: Tran, Thi Hai (2017)

  • A theory is given of the mobility of a two-dimensional electron gas at high temperature in single-side square quantum wells. Within the variational approach, we obtain analytic expressions for the carrier distribution, and autocorrelation functions for various scattering mechanisms. We examine the dependence of the mobilities of carriers on the temperature. Our theory is able to well reproduce the recent experimental data on transport in 1S-doped square QWs, e.g., acoustic-phonon partial mobility dependence on temperature for single-side modulation doped square quantum wells.