Trong những năm gần đây, với sự phát triển nhanh chóng của WWW (World Wide Web) và những khó khăn trong việc tìm kiếm thông tin mong muốn, hệ thống tìm kiếm thông tin hiệu quả đã trên quan trọng hơn bao giờ hết, và các công cụ tìm kiếm đã trở thành một công cụ thiết yếu đối với nhiều người. Xếp hạng thông tin một thành phần không thể thiếu trong mọi công cụ tìm kiếm, thành phần này chịu trách nhiệm cho sự kết hợp giữa các truy vấn xử lý và tài liệu được lập chỉ mục. Ngoài ra, xếp hạng cũng là thành phần then chốt cho nhiều ứng ụng tìm kiếm thông tin khác, các hệ thống quảng cáo trực tuyến. Sử dụng mô hình học máy trong quá trình xếp hạng dẫn đến tạo ra cách mô hình các mô hình xếp hạng sáng tạo và hiệu quả hơn, và cũng dẫn đến phát triển một lĩnh vực nghiên cứu mới có tên là học máy xếp hạng (Learning to rank).
Readership Map
Content Distribution
Trong những năm gần đây, với sự phát triển nhanh chóng của WWW (World Wide Web) và những khó khăn trong việc tìm kiếm thông tin mong muốn, hệ thống tìm kiếm thông tin hiệu quả đã trên quan trọng hơn bao giờ hết, và các công cụ tìm kiếm đã trở thành một công cụ thiết yếu đối với nhiều người. Xếp hạng thông tin một thành phần không thể thiếu trong mọi công cụ tìm kiếm, thành phần này chịu trách nhiệm cho sự kết hợp giữa các truy vấn xử lý và tài liệu được lập chỉ mục. Ngoài ra, xếp hạng cũng là thành phần then chốt cho nhiều ứng ụng tìm kiếm thông tin khác, các hệ thống quảng cáo trực tuyến. Sử dụng mô hình học máy trong quá trình xếp hạng dẫn đến tạo ra cách mô hình các mô hình xếp hạng sáng tạo và hiệu quả hơn, và cũng dẫn đến phát triển một lĩnh vực nghiên cứu mới có tên là học máy xếp hạng (Learning to rank).