Full metadata record
DC FieldValueLanguage
dc.contributor.authorGunturi, Venkata M. V. ; Shekhar, Shashi, 1963-
dc.date.accessioned2020-04-08T15:00:19Z-
dc.date.available2020-04-08T15:00:19Z-
dc.date.issued2017
dc.identifier.isbn9783319677712 ; 3319677713 ; 9783319677705 ; 3319677705.
dc.identifier.urihttp://repository.vnu.edu.vn/handle/VNU_123/78228-
dc.description.abstractThis book highlights some of the unique aspects of spatio-temporal graph data from the perspectives of modeling and developing scalable algorithms. The authors discuss in the first part of this book, the semantic aspects of spatio-temporal graph data in two application domains, viz., urban transportation and social networks. Then the authors present representational models and data structures, which can effectively capture these semantics, while ensuring support for computationally scalable algorithms. In the first part of the book, the authors describe algorithmic development issues in spatio-temporal graph data. These algorithms internally use the semantically rich data structures developed in the earlier part of this book. Finally, the authors introduce some upcoming spatio-temporal graph datasets, such as engine measurement data, and discuss some open research problems in the area. This book will be useful as a secondary text for advanced-level students entering into relevant fields of computer science, such as transportation and urban planning. It may also be useful for researchers and practitioners in the field of navigational algorithms.1 Introduction -- 2 Fundamental Concepts for Spatio-Temporal Graphs -- 3 Representational Models for Spatio-Temporal Graphs -- 4 Fastest Path for a Single Departure-Time -- 5 Advanced Concepts: Critical Time Point Based Approaches -- 6 Advanced Concepts: Bi-directional Search for Temporal Digraphs -- 7 Knowledge Discovery: Temporal Disaggregation in Social Interaction Data -- 8 Trend Topics: Engine Data Analytics.
dc.format.extent103 p.
dc.language.isoen
dc.publisherSpringer
dc.rights© Springer International Publishing AG 2017
dc.subjectGeospatial data ; Spatial analysis (Statistics) ; SCIENCE -- Earth Sciences -- Geography ; Dữ liệu không gian địa lý ; Phân tích không gian (Thống kê) ; Khoa học -- Khoa học Trái đất -- Địa lý ; Hệ thống thông tin địa lý
dc.subject.ddc910.285
dc.titleSpatio-temporal graph data analytics
dc.typeBook
Appears in Collections:Khoa học xã hội và hành vi


  • 2017_Book_Spatio_TemporalGraphDataAnalyt.pdf
    • Size : 2,91 MB

    • Format : Adobe PDF

    • View : 
    • Download : 
  • Full metadata record
    DC FieldValueLanguage
    dc.contributor.authorGunturi, Venkata M. V. ; Shekhar, Shashi, 1963-
    dc.date.accessioned2020-04-08T15:00:19Z-
    dc.date.available2020-04-08T15:00:19Z-
    dc.date.issued2017
    dc.identifier.isbn9783319677712 ; 3319677713 ; 9783319677705 ; 3319677705.
    dc.identifier.urihttp://repository.vnu.edu.vn/handle/VNU_123/78228-
    dc.description.abstractThis book highlights some of the unique aspects of spatio-temporal graph data from the perspectives of modeling and developing scalable algorithms. The authors discuss in the first part of this book, the semantic aspects of spatio-temporal graph data in two application domains, viz., urban transportation and social networks. Then the authors present representational models and data structures, which can effectively capture these semantics, while ensuring support for computationally scalable algorithms. In the first part of the book, the authors describe algorithmic development issues in spatio-temporal graph data. These algorithms internally use the semantically rich data structures developed in the earlier part of this book. Finally, the authors introduce some upcoming spatio-temporal graph datasets, such as engine measurement data, and discuss some open research problems in the area. This book will be useful as a secondary text for advanced-level students entering into relevant fields of computer science, such as transportation and urban planning. It may also be useful for researchers and practitioners in the field of navigational algorithms.1 Introduction -- 2 Fundamental Concepts for Spatio-Temporal Graphs -- 3 Representational Models for Spatio-Temporal Graphs -- 4 Fastest Path for a Single Departure-Time -- 5 Advanced Concepts: Critical Time Point Based Approaches -- 6 Advanced Concepts: Bi-directional Search for Temporal Digraphs -- 7 Knowledge Discovery: Temporal Disaggregation in Social Interaction Data -- 8 Trend Topics: Engine Data Analytics.
    dc.format.extent103 p.
    dc.language.isoen
    dc.publisherSpringer
    dc.rights© Springer International Publishing AG 2017
    dc.subjectGeospatial data ; Spatial analysis (Statistics) ; SCIENCE -- Earth Sciences -- Geography ; Dữ liệu không gian địa lý ; Phân tích không gian (Thống kê) ; Khoa học -- Khoa học Trái đất -- Địa lý ; Hệ thống thông tin địa lý
    dc.subject.ddc910.285
    dc.titleSpatio-temporal graph data analytics
    dc.typeBook
    Appears in Collections:Khoa học xã hội và hành vi


  • 2017_Book_Spatio_TemporalGraphDataAnalyt.pdf
    • Size : 2,91 MB

    • Format : Adobe PDF

    • View : 
    • Download :